
Attacking Machine Learning
The Cylance Case Study

BSides Sydney 2019

About Us

Wears T-Shirts in Corporate Headshots
[yes, I am wearing it now too!]

Heavy on the offensive cyber side (Government)

Category 5 stage fright

Adi Ashkenazy
CEO, Skylight Cyber

Shahar Zini
CTO, Skylight Cyber

Help companies navigate cyber security

Red-team automation

Sydney based consultancy

Not even AI power users...

In a nutshell

Why is this important?

What are we looking to achieve?

AI in Cyber for people who understand quickly

How we approached the problem and reversing the product

Results!

Publication and Feedback

Questions

Challenge

Assess
Technology

Silver Bullet
Hunting

WHY CYLANCE?
AI Centric, can buy it off the shelf, consistently ranks high

Their marketing didn’t help!

The What
● A five finger death punch to the heart of the product - a “universal passive bypass”.

● Proving that an ML model itself presents a new attack surface.

● Show that no, AI did not “solve security”.

Classification with AI/ML - The Basics

What is THAT?

“In machine learning and statistics,

classification is the problem of

identifying to which of a set of

categories (sub-populations) a new

observation belongs, on the basis

of a training set of data containing

observations (or instances) whose

category membership is known”

Wikipedia Cat Dog

Classification with AI/ML

Training - Lab

Large Data Set Feature
Selection

Training
[Black Magic]

Classifying - Field

Model!

One Sample Feature
Extraction

Model
application

Decision and
confidence

Lengthy, resource
intensive

Quick and easy to
replicate

An offensive mindset
● Classification is innately naive

● A model is only as good as its data

● How would we fool the bird vs. human classifier?

The OpSec Paradox

Productivity,
Marketing &

Legal
OpSec

Good for
security, bad for
sales

Good for sales,
bad for security

OSINT

Marketing &
Legal

Patents

White Papers & Booklets

Conference Talks

Extracting the Model

Model
Decryption

and Analysis

An infinitely
stupid idea

Encrypted
Model Data

Key

Our own classifier

Let’s build our own classifier so we can dynamically debug and follow the code

Engineering Masterpiece!

Anti-Tampering & Obfuscation

USELESS

ANNOYING

Parsing the Properties

Parser

Property Value

Linker version 5.1

Num sections 5

Section casing Uppercase

Entropy 0.2315

Timestamp 13102382120

⋮
Max section size 827Kb

CLR version 4.0

#UI imports 98

#Process imports 14

#imports 412

Property Type
#1

Property Type
#2

⋮
Property Type

#N

Value #1

Value #2

Value #3

Value #4

Value #5

Value #6

Value #7

Value #8

Value #9

Value #1

Value #2

Value #3

Value #4

Value #5

Property->Feature
Converter

Building the Feature Vector

Value Range #1 Sequence of actions #1

Value Range #2 Sequence of actions #2

Value Range #3 Sequence of actions #3

Property Type
Handler

0

0

1

0

0

0

0

-1

0

0

0

0

1

0

FV

x7000
(Type, Value)

(CLR, 2.0)

1.0 [203]++ |[423]-- | [564]++ | [565]++

1.1 [102]++

2.0 [100]++ | [200]-- | [300]++

4.0 [105]-- | [104]++

Building the Feature Vector

Determine
type handler

and select
action

Index = 100

Index = 200

Index = 300

CLR Property Handler

This process is repeated for every harvested property

Linear Algebra, How I Missed You

Populated by
property
processing

The Model Core

[-1, 1]
Finally!

White/Black-Listing

Reduce and
normalize
features

Check Distance
from Centroids

Reverse score if
below defined

threshold

Centroid #n

Feature Y

Feature X

Sample

Threshold

Rocket What?

Hmmm… This could be interesting,
hold that thought

Let’s Pause and Hypothesise

Attack the
core

mechanism

Attack the
whitelisting
mechanism

Search for
easily

influenced
properties

Craft the PE to
be “close

enough” to a
centroid

Anything you can infer

Strings Galore

for (int index = 0; index < this.imagePEFile_0.Strings.Length; ++index)

{

 if (!this.method_26(this.imagePEFile_0.Strings[index].S, 95088, 854069, 0))

 this.method_14(this.list_0[0], 15166118410741992125UL, 2847678, 0);

}

Location of the String Type handler

WOAH, that’s a
large handler!

Process property function

Examine

HASH(Str #1) [203]++ |[423]-- | [564]++ | [565]++

HASH(Str #2) [1020]++
HASH(Str #3) [866]++ |[533]--

HASH(Str #4) [53]++ |[4]-- | [2464]++ | [5432]++

HASH(Str #5) [4500]++ |[3223]--

HASH(Str #6) [10]++ |[400]-- | [3444]++

HASH(Str #7) [453]++

⋮
HASH(Str #854063) [23]++ |[25]-- | [55]++

HASH(Str #854064) [6088]++ |[48]-- | [4332]++ | [2]++

HASH(Str #854065) [100]++
HASH(Str #854066) [1335]++ |[3234]--

HASH(Str #854067) [64]++ |[233]-- | [44]++

HASH(Str #854068) [12]++ |[14]--

HASH(Str #854069) [6778]++

Hash(string)

Strings Galore, Contd.

The Hypothesis

Strings have the potential for disproportionate impact on the feature vector

If we strip the strings from the good PEs and carefully inject them into a malicious
payload, we may be able to fool the model, as they will overpower the effect of “negative”

properties. Note that the model does not regard “attacker economics”.

The Whitelist provides a hint as to what type of executables are “good” (e.g. Rocket League)
and may have been used to retrain the model at a later stage

Note that we are NOT aiming
to fool the whitelisting

mechanism, rather the main
model!

66 1B C9 66 23 C2 49 8B D7 66 81 E1 00 04 66 0B
C8 0F BF 45 0A 89 44 24 30 48 8B 45 00 66 89 4C
24 28 48 8B CE 48 89 44 24 20 E8 39 68 00 00 33
C9 48 8B D8 48 3B C1 0F 84 97 0C 00 00 0F B7 40
30 66 3B 45 0A 7D 04 66 89 45 0A 45 33 ED 41 3A
FD 74 19 0F B6 4B 3A 0F B6 84 24 89 00 00 00 41

f.Éf#ÂI‹×f.á..f.
È.¿E.‰D$0H‹E.f‰L
$(H‹ÎH‰D$ è9h..3
ÉH‹ØH;Á.„—....·@
0f;E.}.f‰E.E3íA:
ýt..¶K:.¶„$‰...A

⋮

52 75 73 73 69 61 6E 0D 0A 74 0D 0A 52 65 6D 6F
76 65 0D 0A 39 38 75 0D 0A 44 65 6C 65 74 65 0D
0A 6D 64 35 0D 0A 35 35 35 35 0D 0A 43 68 61 6E
6E 65 6C 0D 0A 64 65 73 63 72 69 70 74 69 6F 6E
0D 0A 4D 45 54 0D 0A 25 73 0D 0A 30 31 32 33 34
35 36 37 38 39 41 42 43 44 45 46 0D 0A 77 69 6E
33 32 0D 0A 23 0D 0A 25 30 32 78 0D 0A 29 0D 0A
46 54 0D 0A 25 30 64 0D 0A 31 35 33 36 0D 0A 52
45 44 0D 0A 4C 6F 67 0D 0A 31 30 31 30 0D 0A 42

Russian..t..Remo
ve..98u..Delete.
.md5..5555..Chan
nel..description
..MET..%s..01234
56789ABCDEF..win
32..#..%02x..)..
FT..%0d..1536..R
ED..Log..1010..B

Russian
t
Remove
98u
Delete
md5
5555
Channel
description
MET
%s
0123456789ABCDEF
win32
#
%02x
)
FT
%0d
1536
RED
Log
1010
B6
B14
UG
DLL

⋮

This would never work, right?

Let’s have a look...

Cylance for BSides

Skylight Cybersecurity

Summon the Malware Hordes
Malware Score Before Score After

CoinMiner -826 884

Dridex -999 996

Emotet -923 625

Gh0stRAT -975 998

Kovter -999 856

Nanobot 971 999

Pushdo -999 999

Qakbot -998 991

Trickbot -973 774

Zeus -997 997

Tests on 384 samples from theZoo repository:

88.54% of malware passed as benign
Average score before treatment = -0.92 (min is -1)
Average score after mutation = 0.75 (max is 1)
Average change in score = +1.67 (out of a range of 2).

Publication & Cylance’s Response

...researchers publicly disclosed a specific bypass of
CylancePROTECT®. We verified the issue was not a

universal bypass as reported, but rather a technique that
allowed for one of the anti-malware components of the
product to be bypassed in certain circumstances. The
issue has been resolved for cloud-based scoring and a

new agent will be rolled out to endpoints in the next few
days.

July 21st, Cylance’s Threat Vector

We are still waiting for a fix for the SmartAV product...

Questions?

Thank You!
adi@skylightcyber.com

